
Community Smell Detection and Refactoring
in SLACK: The CADOCS Project

Gianmario Voria∗, Viviana Pentangelo∗, Antonio Della Porta∗, Stefano Lambiase∗,
Gemma Catolino†, Fabio Palomba∗, Filomena Ferrucci∗

∗Software Engineering (SeSa) Lab, Department of Computer Science - University of Salerno, Salerno, Italy
†Jheronimus Academy of Data Science – Tilburg University, ’s-Hertogenbosch, Netherlands

Abstract—Software engineering is a human-centered activity
involving various stakeholders with different backgrounds that
have to communicate and collaborate to reach shared objectives.
The emergence of conflicts among stakeholders may lead to
undesired effects on software maintainability, yet it is often
unavoidable in the long run. Community smells, i.e., sub-optimal
communication and collaboration practices, have been defined to
map recurrent conflicts among developers. While some commu-
nity smell detection tools have been proposed in the recent past,
these can be mainly used for research purposes because of their
limited level of usability and user engagement. To facilitate a
wider use of community smell-related information by practition-
ers, we present CADOCS, a client-server conversational agent
that builds on top of a previous community smell detection tool
proposed by Almarini et al. to (1) make it usable within a well-
established communication channel like SLACK and (2) augment
it by providing initial support to software analytics instruments
useful to diagnose and refactor community smells. We describe
the features of the tool and the preliminary evaluation conducted
to assess and improve robustness and usability.
Tool repository: https://github.com/gianwario/CADOCS
Tool video: https://www.youtube.com/watch?v=a2hOoE1M8hk

Index Terms—Conversational Agents, Community Smells,
Socio-Technical Analysis.

I. INTRODUCTION

Software engineering is a socio-technical activity that re-
quires managers to deliver the best software product, matching
the client requirements and finding the right compromise
between the needs of the stakeholders involved in the pro-
cess [1]–[3]. This is even more critical during software mainte-
nance and evolution activities, which often require maintainers
to prevent the progressive deterioration of product quality [4],
[5]. For this reason, providing tools to handle collaboration
and communication patterns in development communities is
crucial for the success of the project.

Research has been proposing a number of socio-technical
metrics, e.g., socio-technical congruence [6] and turnover [7],
other than coined the term “social debt”: this refers to the
unforeseen project costs connected to the presence of poor
collaboration and communication conditions within a software
community [8], [9]. Community smells, i.e., sub-optimal socio-
technical characteristics and patterns, represent one of the
major causes of social debt [10]. Defiant contributors who
carry out their work with little consideration of their peers or
the presence of siloed areas of the developer community that
do not communicate are just some examples of community

smells that are not only associated to social debt [11], but
also to the likely increase of technical debt [12].

In the recent past, researchers have been also proposing
various tools for detecting community smells [11], [13]. The
current state of the art is represented by CSDETECTOR, a
command-line tool proposed by Almarimi et al. [13] and able
to (1) collect socio-technical metrics and (2) detect ten types
of community smells. Despite the effort spent in engineering
automated solutions to deal with community smells, most
of the available tools were thought for research purposes,
e.g., to enable large-scale empirical studies on socio-technical
concerns [11], [14], without considering their usability nor the
level of user engagement. As a consequence, the adoption of
these tools by practitioners is still challenging.

To address this limitation, we introduce CADOCS
(Conversational Agent for the Detection Of Community
Smells). Our tool first wraps CSDETECTOR [13] to make it
available as a readily-usable SLACK bot. Secondly, CADOCS
builds on top of previous research [15], [16] to provide
practitioners with suggestions on the most suitable refactor-
ing actions to deal with the community smells detected. To
increase user engagement, CADOCS relies on a machine
learning model that enables natural language processing and
understanding. Developing a conversational agent is driven by
our willingness to provide project managers with an instrument
that can detect community smells and guide them by suggest-
ing refactoring actions within an environment they typically
used to communicate with their team members; we used
SLACK since it is considered the most popular and well-known
team communication tool used by practitioners.1 Thanks to
our tool, we believe that project managers could have quick
feedback on the status of the community and possibly react
by rework on the communication structure implemented in
SLACK, e.g., by monitoring how developers communicate over
the channel. We make CADOCS publicly available in our
online appendix [17] and open-source to enable its use for
practitioners and extension for researchers.

II. BACKGROUND AND RELATED WORK

We developed a conversational agent for the detection of
community smells. A conversational agent is a particular
type of bot—an application that automates repetitive, dull, or

1https://tinyurl.com/yyya8r5j

1

https://github.com/gianwario/CADOCS
https://www.youtube.com/watch?v=a2hOoE1M8hk
https://tinyurl.com/yyya8r5j

Fig. 1. The CADOCS’s architecture.

predefined tasks [18], [19]—characterized by the fact that it
communicates with users using a communication channel and
natural language.

As an example of a bot for maintenance and evolution
purposes, Khanan et al. built JITBOT [20], a Just-In-Time
defect prediction GITHUB app which automatically gener-
ates feedback to developers about the commit’s riskiness to
introduce defects. From the communication side, Kim et al.
developed GROUPFEEDBOT [21], i.e., a conversational agent
meant to facilitate team discussion.

In the context of social aspects of software development,
Tamburri et al. [8], [22] defined community smells, i.e., a
set of socio-technical patterns that may lead to social debt.
For example, the smell known as Organizational Silo effect
represents a situation in which a software community is
divided into siloed areas that do not communicate except
through one or two of their respective members.

Various tools were proposed for the detection of commu-
nity smells. For example, Tamburri et al. developed CODE-
FACE4SMELLS [23], a tool able to detect four types of
smells through the use of repository mining and mailing
lists analysis. More related to our work, Almarimi et al.
developed CSDETECTOR [13], a tool able to automatically
detect ten community smells using genetic algorithms that
evolve decision rules. The tool was evaluated on 103 open-
source projects resulting in an F-measure of 89%.

With respect to the state of the art, CADOCS is the
only conversational agent for detecting community smells that
explicitly aims at making this task accessible to practitioners
through a usable interface implemented as a SLACK extension.
Also, the tool exploits recent advances in refactoring commu-
nity smells [15], [16] to provide insights into the most suitable
actions that can be performed to deal with them.

III. CADOCS: CONVERSATIONAL AGENT FOR THE
DETECTION OF COMMUNITY SMELLS

A. Conversational Agent Architecture

CADOCS was designed to adhere to a client-server archi-
tecture, i.e., the reference architecture to build conversational

agents [24], [25]. As shown in Figure 1, we divided the tool
into three separable and modular modules described below.
Tools Wrapper. In its initial version, CADOCS was de-

signed to wrap CSDETECTOR. This means that our tool
currently makes available the functionalities provided by
CSDETECTOR, both in terms of socio-technical metrics mea-
surements and community smell detection [13]. The module
takes the outcome of the command-line interface provided
by Almarini et al. [13] and makes it available to the other
modules in form of a json representation. When wrapping
the tool, we addressed some limitations of CSDETECTOR.
First, by implementing a web service layer architecture we
enhanced the modes in which users can interact with the
tool and abstracted him from the installation process of
CSDETECTOR. Second, we improved the tool’s output by
reorganizing it in a more structured way, i.e., using CSV and
JSON files. It is worth pointing out that our implementation
was made on the basis of a Strategy design pattern [26]
that enables the integration of additional community smell
detectors and the implementation of strategies able to handle
more sophisticated combinations of these detectors.

Machine Learning (ML) System. The machine learner be-
hind the tool had the goal of easing the interaction between
users and system’s logic. Such an interaction was thought
in terms of users’ intents, i.e., the goals the user has in
mind when questioning the bot [27], and were implemented
by means of natural language processing (NLP) and natu-
ral language understanding (NLU). More specifically, we
implemented a module that allows the interpretation of
the users’ intents by means of a machine learner that has
been trained by collecting the possible ways to ask the
bot to fulfil the requests of the tool. In particular, the
machine learner was trained through a survey study that
we performed to understand how stakeholders of the tool—
i.e., researchers, practitioners, and students—would use to
ask the bot about community smells and their refactoring.
We distributed the survey to 9,207 stakeholders identified on
SURVEYCIRCLE.2 For the sake of space limitation, we make
the survey available in our online appendix [17]. In addition,
we developed an active learning mechanism to ensure the
bot’s increasing ability to recognize users’ intentions and
improve its usability over time. In particular, we used a
learning algorithm that interactively queries a user under a
certain threshold to label and increase the dataset with new
instances [28]. Defining a threshold with active learning is
challenging since it can be strictly connected to the context
where it is applied [29], [30]. For this reason, CADOCS
allows users to customize the threshold value. For instance,
suppose the bot’s confidence, i.e., the degree of certainty
about the user’s intent, stands below a set threshold value; in
this case, the tool asks the user to clarify the intent, leading
to a request for updating the training data. Practically, when
the user confirms the correctness of the intent, CADOCS
calls a custom API—implemented in the ML system—and

2The SURVEYCIRCLE website: https://www.surveycircle.com

2

https://www.surveycircle.com

TABLE I
COMMUNITY SMELLS AND MITIGATION STRATEGIES.

Community Smells Mitigation Strategies
Organizational Silo. Siloed areas of the community that do not communicate,
except through one or two of their respective members.

Restructure the community, Create communication plan, Mentoring, Cohesion
exercising, Monitoring, and Introducing a social-rewarding mechanism.

Black Cloud. Information overload due to lack of structured communications
or cooperation governance.

Create communication plan, Restructure the community, and Introduce a Social
sanctioning mechanism.

Radio Silence. One interposes herself into every formal interaction across more
sub-communities with little flexibility to introduce other channels.

Restructure the community, Create communication plan, Mentoring, Cohesion
exercising, Monitoring, and Introduce a Social sanctioning mechanism.

Note: the complete list of detectable community smells is available in our online appendix [17].

saves the sentence and the predicted intent in the dataset
used for training the NLP and NLU modules. In this way,
CADOCS increases the size of the training set, and every
ten new instances retrain the model. If the F-Measure of the
retrained model is higher than the previous one, CADOCS
replaces the older model.

CADOCS CA. This is the core part of the bot, containing
the logic to interact with the user. It interacts with the
Slack workspaces and has been implemented using the Slack
Events API.3 To increase the tool’s usability and accessi-
bility, we followed the heuristics provided by Langevin et
al. [31] to design the interaction flow. The module also
contains the logic to suggest refactoring strategies [15], [16].

The CADOCS Tool.

 CADOCS is a conversational agent developed for the
Slack platform and able to use third-party tools to identify
and manage community smells in software development
communities on GITHUB.

B. Conversational Agent Features

By wrapping CSDETECTOR, our tool uses genetic algo-
rithms [13] to detect the presence of community smells—
some of which are described in Table I. In terms of refactoring
suggestions, CADOCS provides support to handle three types
of community smells, i.e., Organization Silo, Black Cloud,
and Radio Silence. This is because of the lack of literature
on how to mitigate the other community smells [15], [16].
In this sense, CADOCS should be considered as an early
instrument for community smell refactoring: it indeed provides
the architecture to support refactoring of community smells,
hence enabling other researchers to build on top of the tool to
make new refactoring actions available.

To interact with the conversational agent, we rely on the
concept of intent. Specifically, CADOCS can:

I1 Detect community smells and other related socio-
technical information provided by CSDETECTOR, e.g.,
social graphs and metrics, in a development community
given the GITHUB repository;

I2 Detect community smells and other related socio-
technical information in a development community from
a specified date onward, given the GITHUB repository;

I3 Show a report of the last execution;

3Slack Events API: https://api.slack.com/apis/connections/events-api

I4 Show background information about the community
smells the bot can detect;

I5 Suggest refactoring strategies for the detected smells.
The first three intents (I1, I2, and I3) directly derive from

the features of CSDETECTOR and have been enhanced only by
a graphical point of view. The last two (I4 and I5) are instead
novel: the first is a simple way to increase tool usability, while
the second aims to promote knowledge sharing, decorating the
detected community smells with possible refactoring strategies
identified by state of the art [15], [16].

IV. HOW TO USE THE TOOL

The installation guide of the tool is available in our online
appendix [17]. Since the tool consists of 3 separate modules,
i.e., the conversational agent, the machine learner, and the
CSDETECTOR wrapper, the local installation of CADOCS
may be time-consuming. For this reason, we also provided
a web service to test the tool avoiding the full installation
process. More details are reported in our online appendix [17].

As for its use, CADOCS is designed to work as a Slack
app. A generic user has to (1) add CADOCS to one of
their workspaces and (2) communicate with it in one of the
workspace channels to reach one of the available intents.

Once the user has typed a sentence, CADOCS sends it to
the natural language processing services to determine which
of the five intents is being requested. Then, the tool sends an
answer to the users in the same communication channel used
for the input on the intent bases. If CADOCS is unsure which
intent must be fulfilled, it asks the user for confirmation.

Figure 2 shows an example of an interaction between the
tool and a user. The intent requested is to identify community
smells in the repository QUANTUMKATAS (I1). As depicted,
CADOCS identified two community smells and provided
possible mitigation strategies—due to space limitation, the
figure was edited to show refactoring suggestions just for one
smell and to not show additional socio-technical metrics. In the
end, CADOCS stored the result of the execution in a database
(to handle I3) and stands by for any new interactions.

V. EVALUATION OF THE TOOL

Since CADOCS is built on top of CSDETECTOR, we did
not evaluate the tool with respect to its detection accuracy but
we deemed the performance reported by Almarini et al. [13]
as valid in our case as well.

Our evaluation was instead focused on the main functional-
ities introduced by the conversational agent. First, we assessed

3

https://api.slack.com/apis/connections/events-api

Fig. 2. Example GUI for tool interaction.

the robustness of the machine learning model responsible for
the intent prediction. We performed input testing [32], i.e.,
an approach based on metamorphic testing [33] that aims
at identifying potential reasons for unsuccessful training in
the used data. Specifically, we performed two steps: (1) we
morphed parts of our training data—questions to be asked
to CADOCS—into paraphrases having a relation of evenness
with the original sentence; (2) we defined our test oracle so
that the test will pass if the confidence of the prediction for
the paraphrase does not exceed of 0.2 the confidence for
the original sentence. Results showed that our dataset was
good enough to train a model able to predict users’ intents
consistently. Hence, we deemed our model as robust enough
to handle the requests received by users.

Our second evaluation concerned the usability of the bot.
In this case, we applied iterative usability testing [34]. This
strategy is based on an iterative process in which, at each
step, users give feedback about the tool’s user interface—
after executing a series of tasks—and developers modify
the tool accordingly. We recruited four graduated students
who attended and achieved a Human Computer Interaction
course during their degree. We asked them to conduct three
tasks during each process iteration—the tasks are detailed in
Table II. After each iteration, we directly interviewed partic-
ipants to measure the bot’s usability in terms of well-known
metrics—e.g., learnability, efficiency, and satisfaction—and
consequently improved the tool interface [34]. We kept iter-
ating the usability evaluation until reaching saturation. When
assessing the usability of our tool, this process required five
iterations. In those, we extracted four main improvements
related to the addition of information in the user interface,
like (1) the username of the user who requested the analysis,
(2) the definition of the community smell detected, (3) the
look-and-feel of the possible mitigation strategies, and (4) the
link to the repository analyzed. Thanks to this feedback, we
reached the final user interface shown in Figure 2.

Finally, concerning the active learning evaluation, users used

TABLE II
ITERATIVE USABILITY TEST.

Task Description
1 Add CADOCS to your Slack workspace using the provided guidelines.
2 Ask CADOCS to provide the social metrics of one of your repositories.
3 Report the identified metrics at task 1 and the mitigation strategies.

this component during their tasks without reporting issues.
However, we are aware that this component needs to be studied
over time to analyze its stability and evolution when collecting
new instances. We are currently working on such an evaluation
since it requires the tool’s analysis for a longer period of time.

VI. POTENTIAL IMPACT

CADOCS has the potential to impact both researchers and
practitioners. More specifically:

CADOCS for Maintenance and Evolution. A wider adop-
tion of our tool may empower the decision-making activities
of project managers and other leading figures, who may
easily collect socio-technical metrics about their teams and
take informed decisions on how to improve maintenance
and evolution processes. For instance, being aware of the
presence of a Truck Factor Smell (TFS)—which arises
when most of the project information and knowledge are
concentrated in one or few developers—a team leader may
take appropriate countermeasures to prevent project mainte-
nance and evolution activities from increasing in cost and
complexity in response to turnover of some developers.

CADOCS for Knowledge Sharing. Our tool was designed
to ease further extensions. In this sense, the tool may be used
as an instrument to make other software maintenance and
evolution research tools accessible to practitioners, hence
increasing the knowledge sharing between research and
practice. This is especially true when considering the ease
of deployment: the architecture of CADOCS was indeed
designed to alleviate the effort required by practitioners to
install and use research tools.

VII. CONCLUDING REMARKS

We developed CADOCS, a conversational agent able to
detect community smells, compute socio-technical metrics,
and provide refactoring suggestions. We preliminarily assessed
the tool’s capabilities, but as part of our future work, we plan to
perform more empirical experiments. We plan to conduct those
experimentations as part of our future research agenda. We
also plan to keep evolving the tool’s features, supporting more
refactoring recommendations and integrating more community
smell detection tools.

ACKNOWLEDGMENT

Fabio is partially supported by the Swiss National Science
Foundation - SNF Project No. PZ00P2 186090. This work has
been partially supported by the EMELIOT national research
project, which has been funded by the MUR under the PRIN
2020 program (Contract 2020W3A5FY).

4

REFERENCES

[1] P. M. Institute, A Guide to the Project Management Body of Knowledge,
7th ed., 8 2021.

[2] F. P. Brooks Jr, The mythical man-month: essays on software engineer-
ing. Pearson Education, 1995.

[3] P. Ralph, M. Chiasson, and H. Kelley, “Social theory for software engi-
neering research,” in Proceedings of the 20th International Conference
on Evaluation and Assessment in Software Engineering, ser. EASE ’16.
New York, NY, USA: Association for Computing Machinery, 2016.

[4] A. Gupta and S. Sharma, “Software maintenance: Challenges and
issues,” Issues, vol. 1, no. 1, pp. 23–25, 2015.

[5] B. Ulziit, Z. A. Warraich, C. Gencel, and K. Petersen, “A conceptual
framework of challenges and solutions for managing global software
maintenance,” Journal of Software: Evolution and Process, vol. 27,
no. 10, pp. 763–792, 2015.

[6] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, and
C. Williams, “Using software repositories to investigate socio-technical
congruence in development projects,” in Fourth International Workshop
on Mining Software Repositories (MSR’07: ICSE Workshops 2007).
IEEE, 2007, pp. 25–25.

[7] D. Homscheid and M. Schaarschmidt, “Between organization and com-
munity: investigating turnover intention factors of firm-sponsored open
source software developers,” in Proceedings of the 8th ACM Conference
on Web Science, 2016, pp. 336–337.

[8] D. A. Tamburri, P. Kruchten, P. Lago, and H. van Vliet, “Social debt
in software engineering: Insights from industry,” Journal of Internet
Services and Applications, 2015.

[9] ——, “What is social debt in software engineering?” in 2013 6th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). IEEE, 2013, pp. 93–96.

[10] D. A. Tamburri, P. Lago, and H. v. Vliet, “Organizational social
structures for software engineering,” ACM Computing Surveys (CSUR),
vol. 46, no. 1, pp. 1–35, 2013.

[11] D. A. Tamburri, F. Palomba, and R. Kazman, “Exploring community
smells in open-source: An automated approach,” IEEE Transactions on
Software Engineering, vol. 47, no. 3, pp. 630–652, 2019.

[12] F. Palomba, D. Andrew Tamburri, F. Arcelli Fontana, R. Oliveto,
A. Zaidman, and A. Serebrenik, “Beyond technical aspects: How do
community smells influence the intensity of code smells?” IEEE Trans-
actions on Software Engineering, vol. 47, no. 1, pp. 108–129, 2021.

[13] N. Almarimi, A. Ouni, M. Chouchen, and M. W. Mkaouer, “csdetector:
an open source tool for community smells detection,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1560–1564.

[14] N. Almarimi, A. Ouni, M. Chouchen, I. Saidani, and M. W. Mkaouer,
“On the detection of community smells using genetic programming-
based ensemble classifier chain,” in Proceedings of the 15th Interna-
tional Conference on Global Software Engineering, 2020, pp. 43–54.

[15] D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in
community shepherding,” IEEE Software, vol. 33, no. 6, pp. 70–79,
2016.

[16] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci,
“Refactoring community smells in the wild: the practitioner’s field man-
ual,” in Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Software Engineering in Society, 2020, pp.
25–34.

[17] G. Voria, V. Pentangelo, A. Della Porta, S. Lambiase, G. Catolino,
F. Palomba, and F. Ferrucci, “CADOCS: a conversationa agent for the

detection of community smells — online appendix,” 2022. [Online].
Available: https://github.com/gianwario/CADOCS

[18] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,
pp. 928–931.

[19] S. Pérez-Soler, E. Guerra, and J. de Lara, “Flexible modelling using
conversational agents,” in 2019 ACM/IEEE 22nd International Confer-
ence on Model Driven Engineering Languages and Systems Companion
(MODELS-C). IEEE, 2019, pp. 478–482.

[20] C. Khanan, W. Luewichana, K. Pruktharathikoon, J. Jiarpakdee, C. Tan-
tithamthavorn, M. Choetkiertikul, C. Ragkhitwetsagul, and T. Sunet-
nanta, “Jitbot: An explainable just-in-time defect prediction bot,” in Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering, 2020, pp. 1336–1339.

[21] S. Kim, J. Eun, C. Oh, B. Suh, and J. Lee, “Bot in the bunch: Facilitating
group chat discussion by improving efficiency and participation with a
chatbot,” in Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020, pp. 1–13.

[22] D. A. Tamburri, “Software architecture social debt: Managing the
incommunicability factor,” IEEE Transactions on Computational Social
Systems, vol. 6, no. 1, pp. 20–37, 2019.

[23] F. Palomba and D. A. Tamburri, “Predicting the emergence of commu-
nity smells using socio-technical metrics: a machine-learning approach,”
Journal of Systems and Software, vol. 171, p. 110847, 2021.

[24] S. Srivastava and T. Prabhakar, “A reference architecture for applications
with conversational components,” in 2019 IEEE 10th International
Conference on Software Engineering and Service Science (ICSESS).
IEEE, 2019, pp. 1–5.

[25] C. Brown and C. Parnin, “Sorry to bother you again: Developer
recommendation choice architectures for designing effective bots,” in
Proceedings of the IEEE/ACM 42nd International Conference on Soft-
ware Engineering Workshops, 2020, pp. 56–60.

[26] E. Gamma, R. Helm, R. Johnson, R. E. Johnson, J. Vlissides et al.,
Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

[27] L. Chen, D. Zhang, and L. Mark, “Understanding user intent in com-
munity question answering,” in Proceedings of the 21st international
conference on world wide web, 2012, pp. 823–828.

[28] B. Settles, “Active learning literature survey,” 2009.
[29] B. Bryan, R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller,

and L. Wasserman, “Active learning for identifying function threshold
boundaries,” Advances in neural information processing systems, vol. 18,
2005.

[30] B. Settles, “Active learning literature survey,” 2009.
[31] R. Langevin, R. J. Lordon, T. Avrahami, B. R. Cowan, T. Hirsch, and

G. Hsieh, “Heuristic evaluation of conversational agents,” in Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems,
2021, pp. 1–15.

[32] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empirical Software Engineering, vol. 25, no. 6, pp. 5193–
5254, 2020.

[33] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–27, 2018.

[34] A. Genov, “Iterative usability testing as continuous feedback: A control
systems perspective,” Journal of Usability Studies, vol. 1, no. 1, pp.
18–27, 2005.

5

https://github.com/gianwario/CADOCS

	Introduction
	Background and Related Work
	CADOCS: Conversational Agent for the Detection Of Community Smells
	Conversational Agent Architecture
	Conversational Agent Features

	How to Use the Tool
	Evaluation of the Tool
	Potential Impact
	Concluding Remarks
	References

